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AN INEQUALITY IN THE THEORY OF A SEMILINEAR ELASTIC BODY*

V.A. MISYURA
An ineacuality for a ceometrically non-linear hlems iz obtained as an analogue of the
An inequality for a geometrically non-line roblems obtained as an analo gu the

Prager-Synge identity in linear elasticity theory on the basis of a representation of the
elastic energy density of a semilinear elastic body.

The convexity of the potential energy functional in geometrically linear problems of
elasticity theory enabled a dual variational problem, the Castigliano principle, to be
formulated. The fact that the lower bound of the direct functional I is associated with the
lower bound of the dual by the relationship

inf [ = —inf J == sup (—J) 0.1)
turns out to be remarkable here.

The potential energy functional I is examined in a set of kinematically allowable dis-
placement fields w, the dual J in a set of statically allowable stress fields ¢. The property
{0.1) of the dual problem enables the minimum value of the direct functional [/(w} to be
estimated as accurately as desired from below. But this would at once yield /1/ an estimate
of the approximation w minimizing the element w° in the norm L,

fw—wlpy<CUI(W)— ay'h: 0.2)

where d4<(7{(w°) is the lower limit of the minimum value of the functional I, ¢ is a constant,
and V¥, is the domain occupied by the elastic body in the undeformed state.
The estimate {0.2) can be reduced to the form /f2/

fo—o L(V) S EE g e (0.3)

Here ¢ is a statically allowable stress field, o is the kinematically allowable stress,
and ¢° is the true state of stress of the elastic body.

The natural desire to extend these results to the case of geometrically non-linear
problems of elasticity theory encounters a number of difficulties in principle. The first is
associated with the fact that the potential energy functional in geometrically non-linear
problems is not convex. In substance, this excludes the possiblity of constructing a dual
functional for which condition (0.1) would be satisfied. 1t is thereby impossible to compute
the lower bound of the potential energy functional as exactly as desired. The second dif-
ficulty is that the relationship (0.2) is not valid in geometrically non~linear problems. And
even in the case when the dual problem /4/ is constructed formally according to standard
procedure /3/ and a lower bound of the minimum value of the direct functional is obtained,
the connection between this estimate and the error of the approximate solution is not clear.

An attempt is made below to obtain an inequality of the type (0.3) for a semilinear
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elastic body. To this end, a representation is given of the elastic energy density that is
identical with the standard one in the domain of small deformations /5/.

1. The elastic energy of a semilinear material. Let E° be the Lagrange coordinates of
points of an elastic body that occupies a domain V,in the undeformed state and V in the deformed

state, y' () the Cartesian coordinates of points of the elastic body in the undeformed
state and 2 (£ in the deformed state. Furthermore, the Latin subscripts a,b,c¢, ... take
the values 1, 2, 3, ... and correspond to projections on the g’ coordinate axes in the

undeformed state. The complete system of equations of the statics of the theory of a semilinear
material can be represented in the form /5/
ple =0, penglov,= Py pp=0Udz,), z. = 0x'joke (1.1)

The line in the subscripts denotes the operation of covariant differentiation with respect
to the connectedness of the ! coordinate system in the undeformed state. For simplicitiy
in the subsequent discussion it is assumed that the elastic body is not clamped and subjected
to the action of a "dead"™ mass F,=0 and surface P; forces, and n, are components of the
external normal vector to the boundary of the elastic body V,. The elastic energy density U
for an isotropic semilinear material is given by the formula

U = Yah (8P ae) + 1Y apr Tao = | & Jop — g (1-2)
where & and u are Lamé elastic constants, g°“° are contravariant components of the metric
tensor of the Lagrange coordinate system in the undeformed state, |z |,; is the distortion
modulus z.': 2! = |z |2/, and A, satisfies the relations

Bihahyt = gaps  £7PRIA, = 8V, det||A]|| = 4+ 1 (1.3)

Unless otherwise specified, juggling of the indices gq,b.c... 1is performed everywhere

later by using the metric ga°- )
The object p; that is the covector with respect to the transformation of the z' Cartesian

coordinate system and the vector with respect to transformation of the Lagrange coordinates
g in the undeformed state, is called the Piola-Kirchhoff tensor in the geometrically non-

linear theory of elasticity.
Let us represent U as a function of |z |,

U (2a) = M2(g™ |2 lop — 3P + p (| 2] | 2oy — 2™ [T |ap + 3) = V (| 2 |ww) (1.4)

Lemma 1. If (8P |z | = 3) << (1 — 2v)/v, v 1is Poisson's ratio, then

U= inf @ x5 207) O x") =V (p'zs)
%o "E(1.3)

Here and henceforth, writing x,'c (1.3) means that the object =, satifies the constraints

{(1.3).
To give a foundation to the assertion made, the following lemma proved in /4/ is required.

Lemma 2. Let ¢® be an arbitrary tensor and p® the components of an orthogonal
matrix satisfying the condition det]| p,*|| = 1. Then

SUp q%%Hgp = max {| g [*?sqp}
Hab sab

where s,, 1is one of the matrices
E, A,B,C (1.5)
when det| ¢*||>>0 and
—E, —4, —B, —C (1.6)
when det| g®j| << 0. Here |g¢|,° is the modulus of the temnsor ¢*, E is the unit 3x3 matrix,
A = diag {1, —1, —1), B = diag {—1, +1, —1}, C = diag {—1, —1, 1}.
Proof of Lemma 1. We have
® =12k (6%0% 7z, — 32+ (217 | 2], — 2

O iy -+ 9) a.n

i

where the identity g*cg%dysizpyzsy =z || g is used.
Hence it follows that

inf @ =i [YA(y— 3P+ ullz PNz, — 243 p=e"CRla,
%o €(1.3) ¥

Therefore, investigation of the minimum value of the function reduces to investigating
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the minimum of the quadratric trinomial f(y), where inff(y) 1is reached at the point y, =3+
(1 — 2v)/v. Since y<C|zl®, in the case when |z[,*<y, the minimum @ in the set of orthogonal
matrices =,/ under consideration is reached at the point y=|z|% In the case when |z |.® > 5,
we have

inf ®= inf f(y)

.,'015(1.3) y=R!
Calculations yield
V=l [, " <¥e
0= inf ®= o (1.8)
g E(L3) whzllzl,—v) 121>V

which is what is required.

We see that if Poisson's ratio is v << 1/(2 + ¥), where ¥y = (y*%y,)/;, then U =1T. For
small strains (y ~ 107?) this is valid for a very broad class of materials. Almost incom~
pressible quantities (the quantity v close to!/,) are the exception. For this reason, unless
otherwise specified later, when speaking of a similinear material we will understand that its
elastic energy density is given by the relationship (1.8).

Let us note that the function U is identical y,* > (1 — 2v)/v apart from a constant
with the Treloar elastic potential obtained from statistical considerations regarding the
structure of rubber /6/.

2. The function ® and certain properties associated with it. Since @ (x,}, %)) = V (% 'zy),
while the function V (dy) 1is convex in d,, the function @ itself is also convex in Z4}
for fixed x,'.

Consider the functional

T ey = { dar— § paide 2.1)
Vo Ve

where dv is a volume element of the domain V, occupied by the elastic body and do is a
surface element of its boundary 4V,.

Because of the convexity of @ in z*, the problem of stationary points of the func-
tional (2.1) for fixed x, in the set of functionsz'(£’) is identical with the problem regarding
its minimum. The variational principle known in the theory of a semilinear material concerning
the stationarity of the potential energy in the terminology under consideration is formulated
as a problem concerning stationary points in z* (£%) for the functional

I°G@Y) = inf I(x,}, ) (2-2)

Xg'E(1.3)

Note that despite the fact that the functional I (%, z') is convex in 2%, the functional
(2.2) is not convex in z'. The circumstance mentioned is related to the fact that a set of
orthogonal tensors will not be convex in a linear space of tensors of the second rank that is
introduced in a standard manner.

Besides problems of the minimum of the functional I in z* we consider its dual problem.
According to the standard procedure /3/, it is formulated as the problem of the minimum of
the functional

I (v p) =  O*dv (2.3)
Vo

in a set of dual variables p,” satisfying the equations of statics (the first two relations
in (1.1)). The function ®* is the Young-Fenchel transformation of the function @ in the
distortion gz, Since the function ® is convex in 2z', we have

int I (w', 2') = sup (— J (', P,) 2.4)

x? Py
The Young-Fenchel transformation of the function @ in z,/ can be evaluated simply
because the function is the sum of a quadratric and a linear function. Omitting details, we

write down the answer at once

@ (¢!, pf) = V* (%' p") (2.9)
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where V* is the Young-Fenchel transformation of the function V in |z la

. 1 A 20 wel « E
V¥ (ra) = 2 {r”""uz,* W {ra®) } e (2.6)

Let us prove the fundamental property of the auxiliary variational problem (2.1).

Lemma 3. Let z°* be a stationary point of the functional (2.2) and %, the orthogonal
part of its corresponding distortion gz,” = %, 2|5, Then z° supplies the minimum of the
functional [ (%,°%, z') and

I (%, 2y = I° (z°9) 2.7
which is what required.

Proof. The identity (2.7) is obvious and can be verified in an elementary way.

We will show that z°t () is a stationary point of the functional I (x°%, /) and therefore,
supplies the minimum to it. Indeed, the Euler equations of the functional under consideration
have the form

Pa=0 b n,lov, =Py p° = Doz} (2.8)
Since * is a stationary point of the functional I°(sf), it satisfies the first two
relationships of (2.8) where p;%= aU/dz,} | osr To prove the assertion it remains to show that
U joz,} | o1 = 00f0z,}| o (2.9)

Transformation of the right-hand side of (2.9) indeed yields the required result.

Lemma 4. Let z,) be the minimizing element of the functional [I°(z) and x,' the
orthogonal part of its distortion. Then ' minimizes the functional I (%', 2/) and coincides
with one of the stationary points of the functional [°(z)).

The first assertion is almost obvious. 1Indeed I°(5l) = I (%o}, ) <1 (%, ) for any #dlw
by virtue of (2.2). Therefore I (' %) <I (%!, &) for any 2/, which proves what is required.
Hence it follows that =z, is a stationary point of the functional I (%, z/) and, thereby
satisfies (2.6). By virtue of (2.7), the minimizing element &z, satisfies the system of
Eqs.(l.1). And this indeed means that ' coincides with one of the stationary points of
the functional I° (zf).

The identity (2.4) is valid for any =x,. Hence, the relationship

J

infinf I (x,%, 2f) = inf inf (— J (%, p;*)) (2.10)
vt & %o Pt

follows.
Its left-hand side is obviously the minimum value of the potential energy functional of
a semilinear material. This follows from the fact that

infinf I = infinf/
“al xJ x] V‘a"

Since

inf sup (— 7) > sup inf (— J) = sup J° (p;®)

Ha p'ib pib “a Py
we obtain from (2.9)

inf sup (— 7) > sup inf (— 7) = sup J° (py?)
b T b
a

%' By i w Py

The functional J° was constructed /4/ for the lower bound of the minimum value of the
potential energy functional of a semilinear material. Since inf(—J) = —sup (J), identity
(2.8) can also be represented in the following form

infinf 1 4 sus) infJ =0
i x] v pjb

¥a
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3. A certain property of the functionals I and J. Let p;® satisfy (1.1). We shall
later call such an object a statically allowable Piola-Kirchhoff stress tensor. The anlogue

1o gtraas £iald far the functional T (] will he
1€ stress 1l1eld IOY tne runctighnal (&) 7111 De

g = 0001, |

where 2z is a certain kinematically allowable deformable position of the elastic body.
For any fixed x,/ the following identity holds:

™
8
=9
1
o~
S
-
Ko

It follows from the fact that

I, o) = (@dr— § Pardo= — (o dv+ (gorsidn— § Paido
Vo oV, Vo Vo oV,

For any statically allowable field p;® the following relations is satisfied:

S Pfxytdr = S Pa'ido

Vs 8V,

This enables us to rewrite the identity (3.1) in the form

I(ney 29) + T (g% Bol) = T (51, Bef) — T (%', 9,%) - S(ﬁi"— ®) 75" dv (3-2)

The latter is one of the possible forms of the Prager-Synge identity for the functional
I (zh 17/.

We will use the following nptation: U* (6,;) 1is the Young-Fenchel transformation of the
function U in (1.2) in pg = %'z — ga°.

By virtue of (2.5) we have

o ("ai$ p./b) =V* (pianbi) =V* (oab) = 17* (anb) + 0,"
Since pz.' = 0®pg + 0%, it hence follows that

T (s B — T (%' qs") — S (Bi* — 0:°) 25" AT = Ex* (Opp) — E* (rap) — (3-3)

Vo

3 (aub - rlzb) pab dr = Eu* ((_jab - rab), Ex* (Gab) = 5 U+ dr,
\7 Ve

gab = ﬁ‘auib_ reb — qiax'lb

The relations

T (', B2)— T (%' pi°) = E* (G20 — r°ab) (3.4)

1(xgh 2) — I (%', %) = Ex* (rap — an); 1% = g% | o

are established analogously.
Here p,° and = are minimizing elements of the functionals J and I. The identities
(3.3) and (3.4) enable (3.2) to be represented in the form
Eu* (Gab — rab) - E.* (rab - rab) = Eu‘ (Eab b rab) (35)

The functional E,* is quadratic and positive-definite in the set of tensor functions
of the second rank, and the relationship

11102 |l vy << En* (09°) < 6o 110 liywy) = CzS 6°%0,,dT
v

holds for it, where ¢; = 5/(24p) and ce =1/(4p), say. since |l 0q vy =1l P lLgva, it follows
from (3.4) that
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5]

Wi — Y vy << 211 B1® — @4 Hrcv)
e

ltg:® — p?* Hr,wo)\ HP{ — 9 vy

4. The fundamental inequality. Let %, be an orthogonal tensor which makes the func-
tional J (%, p,”) reach a maximum for fixed 7. This means that for any %,

J ("ai’ ﬁjb) <J (T‘aiﬁ P_ib) (41)

Furthermore, we assume the tensor p;® to be statically allowable. If gz} is a minimizing
element of the functional [°(z) and ®oa' is the orthogonal part of its distortion, then

7 (o P3) + 1 (%o 7f) = 0
Here p,® 1is the Piola-Kirchhoff stress tensor corresponding to the deformed position

of the elastic body #,'. Taking the above into account, the identity (3.1) can be rewritten
in the form

I(“a il I’j et J (noav xoj) J" ] (%a ’ ij) - ] (noav Pob) = (42)
T @) — T (%) — § (5 — a) ay'ide

Va

since I (o, z,7) << I (%, %), then by virtue of (3.3) and (3.4) we obtain from (4.2)
E:o (Gt — 0%t) E;* (g% — rab) (4-3)

Finally, on the basis of (3.5) we have the inequality

[1 5% — Poi® leave < —||P1 — @i lleuve) (4.4)

which is the main purpose of this paper. As in geometrically linear problems it enables us to
estimate the difference between the statically allowable Piola-Kirchhoff stress field p;* and
the minimizing element of the potential energy functional of a semilinear elastic body pg°
in the norm [, in terms of the difference p* — ¢ The stress field ¢ here is not
kinematically allowable as it would be in the geometrically linear problem. Its difference
from the true kinematically allowable field corresponding to the deformed state z'* is that
the latter is calculated from (3.1) with @ = ® (%%, 2), where x,/* is the orthogonal part of
the distortion of gz, and the second with @ (i}, zi).

For applications of the inequality (4.4), it is merely necessary to indicate the form
explicitly, which depends on j?

The upper bound of the functlonal J (%}, 5% in all %, reduces in the case under con-
sideration to point-by- pomt maximization of the functlon d* (ua', pj") This has the form
(2.8). Since %5, = p°p.’ is independent of x,, then finding %, will reduce to finding
the maximizing element of the function

%'

R S Y (O -} P
‘P——TH'W(%") + G°
where, as before, 08,° = p"#,". It is clear that |3 (< |7 %

The graph of the dependence of ¥ on z=g¢," 1is a quadratlc parabola with apex at the
point z, = 2Ev1 ({1 4 2M(A -+ 2p)). If the stresses under consideration in the semilinear material
are such that |p |, <%, then 1 takes it maximum value at the maximum of ©7,°. The answer to

the question for which x,' the guantity &, is a maximum is given by Lemma 2. We obtain

that if det|l 5%||>0 then %% = p" and u® 1is the orthogonal part of the temsor p¢ 1In
the case when detllp®ll<< 0, %% = ps,®, where s* 1is an orthogonal matrix selected from the
condition max,, {|p |, s}, the maximum is sought in orthogonal matrices that have the form

(1.6) 1in the principal coordinate system for the tensor |p |,°.
Finally we obtain that the following theorem holds.

Theorem 2. Let p° be a certain Piola-Kirchhoff stress field satisfying the first two
equations of (1.1) and let ¢;% be the stress field associated with an arbitrary deformed
state of the elastic body by the relationship

= 0 (%}, 29)/9x,} [ _
i

Then the minimizing element =z,} of the potential energy functional I°(z') of a semilinear
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material is connected with the tensors p;i" and ¢ the relationship (4.4), where

poi® = 80U 3z} i
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ON THE REALIZATION OF HOLONOMIC CONSTRAINTS*
V.V. KOZLOV and A.I. NEISHTADT

The idea of realizing holonomic constraints by means of elastic forces
was proposed by Lecornu, Klein and Prandtl /1/ when dealing with the
paradox of dry friction discovered by Painleve. The general theorem on
the realization of holonomic constraints with the help of elastic forces
directed towards the configurational manifold of a constrained system
was proposed by Courant and was proved in /2/. The generalization of
Courant's theorem was considered in /3-5/ by studying the passage to the
limit in the case when the velocity of the system at the initial instant
is transverse to the manifold defined by the constraint equations. 1In
/2-5/ the assumption that the system in question in conservative is used
to a considerable degree.

The main results of the present paper is the fact that the theorem on the passage to the
limit holds without assuming that the generalized forces are potential in character. The
elastic forces acting on the "free" system have, in general, no limit when the coefficient of
elasticity tends to infinity. However, as is shown below, after suitable regularization these
forces tend precisely to the reactions of the system with constraints.

1. Initial equations. Let a natural mechanical system be given in R™=={r}, constrained
by m ideal holonomic constraints. Let E(~,r) be the kinetic energy of the system without
constraints and let F(,r) be the generalized active force. The equations of motion will
have the form

(0E/ar’y — 0FE/or = F + R 1.1)
where R is the reaction force of the constraints. The constraints define in R* a manifold M
of dimensions n,= n -—n, over which the system must move. In accordance with the axiom of
the ideality of the constraints, the 1-form Rdr vanishes on the vectors tangent to M.
We shall consider the problem of realizing the constraints using the force with potential
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