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AN INEQUALITY IN THE THEORY OF A SEMILINEAR ELASTIC BODY' 

V.A. MISYURA 

An inequality for a geometrically non-linear problems is obtained as an analogue of the 
Wager-Synge identity in linear elasticity theory on the basis of a representation of the 
elastic energy density of a semilinear elastic body. 

The convexity of the potential energy functional in geometrically linear problems of 
elasticity theory enabled a dual variational problem, the Castigliano principle, to be 
formulated. The fact that the lower bound of the direct functional I is associated with the 
lower bound of the dual by the relationship 

inf I = -inE J = sup (--J) (0.1) 

turns out to be remarkable here. 
The potential energy functional I is examined in a set of kinematically allowable dis- 

placement fields w, the dual J in a set of statically allowable stress fields (J. The property 
(0.1) of the dual problem enables the minims value of the direct functional 1(w) to be 
estimated as accurately as desired from below. But this would at once yield /If an estimate 
of the approximation w minimizing the element w0 in the norm Le 

II w - W‘llt*(Y1) <c (1 (w) - W (0.3) 

where d < I (w") is the lower limit of the minims value of the functional I, 6' is a constant, 
and V, is the domain occupied by the elastic body in the undeformed state. 

The estimate (0.2) can be reduced to the form /2/ 

Here ii is a statically allowable stress field, CT' is the kinematically allowable stress, 
and 0" is the true state of stress of the elastic body. 

The natural desire to extend these results to the case of geometrically non-linear 
problems of elasticity theory encounters a number of difficulties in principle. The first is 
associated with the fact that the potential energy functional in geometrically non-linear 
problems is not convex. In substance, this excludes the possiblity of constructing a dual 
functional for which condition (0.1) would be satisfied. It is thereby impossible to compute 
the lower bound of the potential energy functional as exactly as desired. The second dif- 
ficulty is that the relationship (0.2) is not valid in geometrically non-linear problems. And 
even in the case when the dual problem /4/ is constructed formally according to standard 
procedure /3/ and a lower bound of the minimum value of the direct functional is obtained, 
the connection between this estimate and the error of the approximate solution is not clear. 

An attempt is made below to obtain an inequality of the type (0.31 for a semilinear 
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elastic body. To this end, a representation is given of the elastic energy density that is 
identical with the standard one in the domain of small deformations /5/. 

1. The eZastic energy of a semilinear material. Let 5" be the Lagrange coordinates of 
points of an elastic body that occupies a domainV,in the undeformed state and V in the deformed 
state, y’(s”) the Cartesian coordinates of points of the elastic body in the undeformed 

state and z'(r) in the deformed state. Furthermore, the Latin subscripts a, 0, c, . . . take 

the values 1, 2, 3, . . . and correspond to projections on the E' coordinate axes in the 
undeformed state. The complete system of equations of the statics of the theory of a semilinear 
material can be represented in the form /5/ 

P4" = u, ['i""* l,,,., = Pi; pi" = aa;r1.X<,+, x*2 =: a?/@' (1.1) 

The line in the subscripts denotes the operation of covariant differentiation with respect 
to the connectedness of the E coordinate system in the undeformed state. For simplicitiy 
in the subsequent discussion it is assumed that the elastic body is not clamped and subjected 
to the action of a "dead" mass Fi= 0 and surface Pi forces, and n, are components of the 
external normal vector to the boundary of the elastic body Vu. The elastic energy density I, 
for an isotropic semilinear material is given by the formula 

U = I::& (fiO""l'&)? -I ~+J?;ao, Y"b = ) .x I”* - g:, (1.2) 
where h and )1 are Lam& elastic constants, gLal) are contravariant components of the metric 
tensor of the Lagrange coordinate system in the undeformed state, 11 lab is the distortion 
modulus 5,': z,i = 15 (,,bhb’, and 1,' satisfies the relations 

&i,h"9.bz = &, g",ib;.,"h,j = 6ij, drt 11 h,i 11 = + 1 (1.3) 

Unless otherwise specified, juggling of the indices a, b. c . . is performed everywhere 

later by using the metric got,'. 
The object pia that is the covector with respect to the transformation of the xz Cartesian 

coordinate system and the vector with respect to transformation of the Lagrange coordinates 

5" in the undeformed state, is called the Piola-Kirchhoff tensor in the geometrically non- 
linear theory of elasticity. 

Let us represent U as a function of 1.z lab 

u (x2) = h/2 (p ( 5 lab - 3)2 + p (I 5 p I x lob - 2&P* 15 Ia* + 3) = V (I & lo*) (1.4) 

Lenma 1. If (go"" 1 z lab = 3),< (1 - 2v)iv, Y is Poisson's ratio, then 

U (f,') = inf Q (xoi, zo'), @ (xOi, lb)) = V (X~&,) 
y.,k(l.3) 

Here and henceforth, writing x,~ E(1.3) means that the object x,' satifies the constraints 
(1.3). 

To give a foundation to the assertion made, the following lemma proved in /4/ is required. 

Lemma 2. Let qab be an arbitrary tensor and pub the components of an orthogonal 
matrix satisfying the condition d&II ~~~~11 = 1. Then 

where s,~, is one of the matrices 

E,A,B, C (1.5) 

when det(( qyD 11 > 0 and 

-E,-A,-B,-C (I.@ 

when det II qflb (1 < 0. Here 1 q lb0 is the modulus of the tensor q*, E is the unit 3x3 matrix, 

A = diag {I, -1, -I), B = diag (-1, +l, -I}, C = diag (-1, -1, 1). 

Proof of Lennna 1. We have 

al = Wk? 
Wb i 
xa 5,* -33)1+- p(( z lobI 51ub-2goabXa%ib +3) (1.7) 

where the identity YWcpo~d~4"z,t,~,'~~d = I z lab I I 1 ab is used. 
Hence it follows that 

inf 4, = inf [‘/,A (y - 3)a $- p (1 z lab ( x lab - 2Y + 3)l; 
ZafE(1.3) * 

Y = g""x,'zib 

Therefore, investigation of the minimum value of the function reduces to investigating 
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the minimum of the quadratric trinomial f (Y), where inf f (y) is reached at the point y,,= 3+ 
(1 - Zv)/v. Since y -5; 1 z jaa, in the case when Iz[,~<Y~ the minimum 0 in the set of orthogonal 

matrices xc1 under consideration is reached at the point y= 111,~. In the case when [zIf>ya 

we have 
inf Q = Jz_RE$f(y) 

Y_k(l.3) = 

Calculations yield 

(1.8) 

which is what is required. 
We see that if Poisson's ratio is Y < l/(2 + y), where Y = (yab~&~, then U = c. For 

small strains (y - 10M2) this is valid for a very broad class of materials. Almost incom- 
pressible quantities (the quantity Y close to'/,) are the exception. For this reason, unless 
otherwise specified later, when speaking of a similinear material we will understand that its 
elastic energy density is given by the relationship (1.81‘. 

Let us note that the function U is identical yaa > (1 - Zv)/v apart from a constant 
with the Treloar elastic potential obtained from statistical considerations regarding the 
structure of rubber /6/. 

2. The function Q and certain properties associated with it. Since a((~,~, xbj) = V(xaixi,), 

while the functron V(d,,) is convex in d,,, the function Q itself is also convex in I,~ 
for fixed x,:. 

Consider the functional 

I(%,‘, XI)= S @dz- S p&da 
YO W. 

(2.1) 

where dr is a volume element of the domain V, occupied by the elastic body and da is a 
surface element of its boundary aV,. 

Because of the convexity of @in xi, the problem of stationary points of the func- 
tional (2.1) for fixed xai in the set of functionsx"@')is identical with the problem regarding 
its minimum. The variational principle known in the theory of a semilinear material Concerning 

the stationarity of the potential energy in the terminology under consideration is formulated 
as a problem concerning stationary points in x"(E") for the functional 

I"(d) = inf 
XbiEU.3) 

Z(lCa,x!) (2.2) 

Note that despite the fact that the functional I@,",$) is convex in xi, the functional 
(2.2) is not convex in xi. The circumstance mentioned is related to the fact that a set of 
orthogonal tensors will not be convex in a linear space of tensors of the second rank that is 
introduced in a standard manner. 

Besides problems of the minimum of the functional I in xi we consider its dual problem. 
According to the standard procedure /3/, it is formulated as the problem of the minimum of 
the functional 

(2.3) 

in a set of dual variables pjb satisfying the equations of statics (the first two relations 
in (1.1)). The function @* is the Young-Fenchel transformation of the function 0 in the 
distortion x:. Since the function @ is convex in zi, we have 

ififI(xat, x') = sug (- 3 (x0', pj*)) (2.4) 
pj 

The Young-Fenchel transformation of the function @ in xi can be evaluated simply 
because the function is the sum of a quadratric and a linear function. Omitting details, we 
write,down the answer at once 

Q (x,', p,b) = v* (x2 p,b) (2.5) 



702 

where V* is the Young-Fenchel transformation of the function V in 1.~ jnb 

Let us prove the fundamental property of the auxiliary variational problem (2.1). 

Lennm 3. Let zoi be a stationary point of the functional (2.2) and xbDi the orthogonal 
part of its corresponding distortion x,“~ = xCoi) rlac. Then xoi supplies the minimum of the 

functional Z (x,O”, xi) and 

Z klO', &) = Z" @"I) (2.7) 

which is what required. 

Proof. The identity (2.7) is obvious and can be verified in an elementary way. 
We will show that r"'@) is a stationary point of the functional I(x,‘~,z~) and therefore, 

supplies the minimum to it. Indeed, the Euler equations of the functional under consideration 
have the form 

P?,, = 0, p,%, lava = Pi, p; = m,/az~ (2.8) 

Since =Oi is a stationary point of the functional I"@), it satisfies the first two 
relationships of (2.8) where pIa = aU/k~," IxOi. To prove the assertion it remains to show that 

aupz; lsoi = aqar: lxoi (24 
Transformation of the right-hand side of (2.9) indeed yields the required result. 

Lennna 4. Let xOi be the minimizing element of the functional I" (5') and I 

orthogonal part of its distortion. Then x0' minimizes the functional Z(x,,i,xj) ai: coEnh:ides 
with one of the stationary points of the functional I"(i). 

The first assertion is almost obvious. Indeed IO (+i) = I (xoni, &) < I (x,“, z]) for any xai,z' 
by virtue of (2.2) . Therefore I (xoa', sOj)< I (xODi,z') for any zj, which proves what is required. 
Hence it follows that zOi is a stationary point of the functional I(x,,',sl) and, thereby 
satisfies (2.6). By virtue of (2.7), the minimizing element zOj satisfies the system of 
Eqs.(l.l). And this indeed means that x0' coincides with one of the stationary points of 
the functional I"(>). 

The identity (2.4) is valid for any x,~. Hence, the relationship 

infinf I(x,',zj) = infinf(- J(x,', pjb)) 
Yol X xoi pia 

(2.10) 

follows. 
Its left-hand side is obviously the minimum value of the potential energy functional of 

a semilinear material. This follows from the fact that 

infiyf I = infinfI 
K(ia x ij y.nl 

Since 

we obtain from (2.9) 

infsuP(-J)>ssupinf(- I)= supJ"(pi') 
XaC PI* Pi* Xaz Plb 

The functional J” was constructed /4/ for the lower bound of the minimum value of the 
potential energy functional of a semilinear material. Since inf(--J) = -sup(J), identity 
(2.8) can also be represented in the following form 

inf ir:f I _t- sup inf I = 0 
Y*I r ya Pjb 
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3. A certain property of the functionds I ad J. Let ,iYt satisfy (1.1). We shall 
later call such an object a statically allowable Piola-Kirchhoff stress tensor. The anlogue 
of a kinematically allowable stress field for the functional I@) will be 

qia = aqaxGi lx,< 

where zli is a certain kinematically allowable deformable position of the elastic body. 
For any fixed xai the following identity holds: 

I(X,', t”) + I (SC,‘, pjb) = J (x,‘, pjb) - J (x.‘, qib) - A 
0 

Pix”do + jyb.,.‘dr 

It follows from the fact that 

(3.1) 

I (nai, z’j) = S 0 dl - S P&do = - S CD* dr + S qpx:'dT - S up? do 
V. 8VO V. V. av. 

For any statically allowable field pia the following relations is satisfied: 

JO j&ax;idT = 1 P,xfido 
8V. 

This enables .us to rewrite the identity (3.1) in the form 

(3.2) 

The latter is one of the possible forms of the Prager-Synge identity for the functional 
I (x') /7/. 

We will use the following notation: is the Young-Fenchel transformation of the 
function LJ in (1.2) in pob = w,ixib - g,,". 

ui* (%b) 

By virtue of (2.5) we have 

@*(x,', plb) = V* (pi%;) = V* (uOb) = U* (uOb) + a,” 

Since piaxd = oDbp,, + Us’, it hence follows that 

I (Xai, pj')- J(x,,',q~~)- 1 (pi" - qi")X:dr = E,* &b)- E,* (rob)- 

” j, (%b - rhb) pab dT = E’,* (cab - Tab), E,* (on,,) = 1 u* dz, 
V. 

fjab = p,o&b, rab = qr%*b 

(3.3) 

The relations 

I (at,<, pp ) - J (x,“, pi”) = E,* (W - r”ab) (3.4) 

I (%,i, dj) -I (x.‘, tp) = E,* (rob - 
0 

r&); r’ab = qr%4b lqO1 

are established analogously. 

Here prnb and nOj are minimizing elements of the functionals J and I. The identities 
!3.3) and (3.4) enable (3.2) to be represented in the form 

The functional 
of the second rank, 

holds for it, where 
from (3.4) that 

0 0 

E,* (z,,b - Tab) + &* (rob - r,b) = fL* (&b - rab) (3.5) 

-&* is quadratic and positive-definite in the set of tensor functions 
and the relationship 

~,ll@~ll~,,cv., < ~%*(o"~) Q ~zllo."~II~,(v~) = c, 5 oabo& 
V 

cl = 51(24P) and c2 = l/(411), say. Since 11 (Jab k,(Vd = 11 pt” hV& it follows 
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4. The fwrdamentat 
tional J (SC,+, @jb) reach 

inequality. Let Xai be an orthogonal tensor which makes the func- 
a maximum for fixed Fib. This means that for any nai 

J (Xl, pj’) < J (Xni? Djb) (4.‘) 

Furthermore, we assume the tensor pia to be statically allowable. If x0' is a minimizing 
element of the functional I"(I) and %ai is the orthogonal part of its distortion, then 

I(&, pi,) + I(&, r,f) = 0 

Here pojb is the Piola-Kirchhoff stress tensor corresponding to the deformed position 
of the elastic body xoi. Taking the above into account, the identity (3.1) can be rewritten 
in the form 

I&", s'j) -J (&,z,,') + J (Za",jSjb)- J (& pip,) = 

1 (Xa'pj*) - J (gai, qjb) - s (jj6 - qjb) x,‘jdz 
v. 

(4.2) 

Since I (Xgai, z,j) < Z (X.‘, z’j), then by virtue of (3.3) and (3.4) we obtain from (4.2) 

E;Jijub _ o""b )<E;*(Zab -+) (4.3) 

Finally, on the basis of (3.5) we have the inequality 

II Pi" - PO? llMVOI < 2 II Pi* - QiqllL(Vo) (4.4) 

which is the main purpose of this paper. As in geometrically linear problems it enables us to 
estimate the difference between the statically allowable Piola-Kirchhoff stress field pi" and 
the minimizing element of the potential energy functional of a semilinear elastic body Poi’ 
in the norm L, in terms of the difference pp - qia. The stress field Qi" here is not 
kinematically allowable as it would be in the geometrically linear problem. Its difference 
from the true kinematically allowable field corresponding to the deformed state xii is that 
the latter is calculated from (3.1) with Q, = Q)(x,'~,z~), where xi' is the orthogonal part of 
the distortion of I,'~ and the second with @ (%,', zj). 

For applications of the inequality (4.4), it is merely necessary to indicate the form 
?i,' explicitly, which depends on pia. 

The upper bound of the functional J(xoi,p,“) in all xai reduces in the case under con- 
sideration to point-by-point maximization of the function This has the form 
(2.6). Since EabE = PiaPe” 

CJ* (%a+, pj"). 
ob is independent of x,,~, then finding X,' will reduce to finding 

the maximizing element of the function 

1 h@+@) - 
9 = --q (3h+2# (%a)* + %la 

where, as before, &," = j?<"X,'. It is clear that 1 San I< 1~7 I,“. 
The graph of the dependence of II, on z = 0," is a quadratic parabola with apex at the 

point z. = 2Ev-’ (1 + 2h/(h + 2~)). If the stresses under consideration in the semilinear material 
are such that Jp loa <z,, then II, takes it maximum value at the maximum of &". The answer to 

the question for which xi the quantity Ema is a maximum is given by Lemma 2. We obtain 
that if detIIp4jI > 0 then Xi" = pp and p,' is the orthogonal part of the tensor pia. In 
the case when det II niaII ( 0, Sio = ptbsboe, where sba is an orthogonal matrix selected from the 
condition maxBab {I F lb’ ~9, the maximum is sought in orthogonal matrices that have the form 

(1.6) in the principal coordinate system for the tensor ljj lb'. 
Finally we obtain that the following theorem holds. 

Theorem 2. Let Pla be a certain Piola-Kirchhoff stress field satisfying the first two 
equations of (1.1) and let qi" be the stress field associated with an arbitrary deformed 
state of the elastic body by the relationship 

4%' = SD (?i,i, Zi)/8Zai J,i,x*i 

Then the minimizing element x,,* of the potential energy functional I"(z') of a semilinear 
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material is connected with the tensors pi" and qiR the relationship (4.4), where 

poia = aujax,'I,i=,i 
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ON THE REALIZATION OF HOLONOMIC CONSTRAINTS* 

V.V. KOZLOV and A.I. NEISHTADT 

The idea of realizing holonomic constraints by means of elastic forces 
was proposed by Lecornu, Klein and Prandtl /l/ when dealing with the 
paradox of dry friction discovered by Painleve. The general theorem on 
the realization of holonomic constraints with the help of elastic forces 
directed towards the configurational manifold of a constrained system 
was proposed by Courant and was proved in /2/. The generalization of 
Courant's theorem was considered in /3-5/ by studying the passage to the 
limit in the case when the velocity of the system at the initial instant 
is transverse to the manifold defined by the constraint equations. In 
/2-5/ the assumption that the system in question in conservative is used 
to a considerable degree. 

The main results of the present paper is the fact that the theorem on the passage to the 
limit holds without assuming that the generalized forces are potential in character. The 
elastic forces acting on the "free" system have, in general, no limit when the coefficient of 
elasticity tends to infinity. However, as is shown below, after suitable regularization these 
forces tend precisely to the reactions of the system with constraints. 

1. Initial equations. Let a natural mechanical system be given in R*=(r), constrained 
by nl ideal holonomic constraints. Let E (r’. r) be the kinetic energy of the system without 
constraints and let F (r'. r) be the generalized active force. The equations of motion will 
have the form 

(aE/ar’). - awar = F + R (1.i) 

where R is the reaction force of the constraints. The constraints define in Rn a manifold M 
of dimensions n,= n-n,, over which the system must move. In accordance with the axiom of 
the ideality of the constraints, the l-form Rdr vanishes on the vectors tangent to M. 

We shall consider the problem of realizing the constraints using the force with potential 
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